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Abstract

The present paper analyzes In detail (talk-aloud protocols) "GoodO and "Poor"

students' initial encoding of worked-out examples of mechanics problems, and their

subsequent reliance on examples during problem solving. We find that "Goodl students

learn with understanding: they generate many explanations which refine and expand the

conditions for the action parts of the example solutions, and relate these actions to

principles In the text. These self-explanations are guided by accurate monitoring of their

comprehension failures and successes. Such learning results In an example-independent

knowledge and in a better understanding of the principles presented In the text. OPoorm

students do not generate sufficient self-explanations, inaccurately monitor their learning

and subsequently rely heavily on examples. The results are discussed relating these

psychological flndings to existing Al models of explanation-based generalizations.
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SELF-EXPLANATIONS: HOW STUDENTS STUDY AND
USE EXAMPLES IN LEARNING TO SOLVE PROBLEMS

Learning is a constructive process In which the student converts the words- and

examples from the teacher or the text, into usable skills, such as solving problems. This

process of conversion is essentially a form of constructive self-instruction (Simon, 1979).

Although the research on the quality of good teaching (such as those which attempt to

Identify the characteristics of a good Socratic tutor, Collins & Stevens, 1982), as well as

research on the quality of a good text (such as those that manipulate the quality of

elaborations, Reder & Anderson, 1980) may be informative, ultimately, learning rests on

the learning skills that the students themselves bring to bear as they learn. The goal of

this research is to understand the students' contribution to learning. To accomplish this

goal, our approach Is to study Individual differences as the students learn.

The majority of problem solving research in the literature assumes that the

declarative knowledge is first encoded from the text or from the teacher's words, then

proceduralized into a skill. Most of the literature has concentrated on the conversion of

already encoded knowledge Into smooth, fast, skillful problem so!ving. This conversion

process dominates, for example, Anderson's theory of skill acquisition (Anderson, 1987).

In that theory, the process of conversion Is achieved by using general weak methods

which can convert declarative knowledge into domain specific procedures via the

mechanism of compilation. Thus, In Anderson's theory, It is assumed that the effortful

process lies In the conversion of the declarativ;? knowledge Into the procedural

knowledge, whereas the encoding of the declarative knowledge is taken to be a

straightforward storing:

In unanalyzed form our experiences in any domain, Including instruction (if It
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Is available), models of correct behavior [worked-out examples], successes and

failures of our attempts, and so on... This means that we can easily get

relevant knowledge into our system.... (p. 206).

We concur with the common assumption that learning a skill can be viewed as

encoding of instruction followed by proceduralization of some kind. However, our

research focuses on the encoding of instruction, because a leading conjecture Is that

individual difference is due to the differences in the encoded representation rather than

differences in conversion of the encoded instructions to skill. Anderson (1987) also

alluded to this difference In the encoded representation as a source of individual

differences when he suggested that: "weak problem-solving methods like analogy can be

much more effective if they operate on a rich representation of the knowledge... u (p.

206).

Our work foc-sed on the knowledge that students acquire as they read from a text,

prior to their attempts to apply that knowledge in the form of a procedural skill such as

problem solving. We predict that learner differences arise primarily from the

representation that the student has acquired. Thus, we believe that Individual

differences do not arise solely from the experiences the learner is exposed to in the form

of Instruction or text. Rather, we conjecture that learner differences may arise from

differences In the ways students understand and learn from text, and moreover, these

learner differences subsequently effect the use of a partlcular skill (solving problems).

Our interest In learner differences derives In part from an attempt to understand

the acquisition of expertise. While it takes long periods of study and practice before one
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can become an expert in any domain. It is clear that extensive practice and study is a

necessary but not sufficient criterion for becoming an expert. Thus, examining how

students differ in the way they learn new materials may shed light on processes of skill

acquisition that determine whether an individual will or will not achieve expertise.

The part of the text that we focus on Is the worked-out examples. This choice was

based on theoretical, empirical, as well as instructional reasons. Theoretically, there is

some controversy in the literature concerning how generalizations are induced from

examples (see Dietterich & Michalski, 1983, for a review of the Al literature, and

Murphy & Medin, 1985, for a review of the psychological literature.) There are two

views. A similarity-based approach claims that generalizations are developed by inducing

a principle (or a set of common features) from multiple examples. Such a principle would

embody the essential features shared by all the examples. On the other hand, an

explanation-based approach to problem solving (Lewis, 1986; Mitchell, Keller & Kedar-

Cabelli. 1986) claims that generalization can be obtained from a single or a few

examples. Although many theories, including Anderson's ACT*, can only generalize

from many examples, It is clear that students can often generalize from a single example

(Elio & Anderson, 1983: Kieras & Bovair, 1986). Providing evidence on how

generalizations can emerge from learning a few examples would give credence to an

explanation-based approach to learning.

Empirically and instructionally, there is a dilemma In the literature as well. More

and more empirical evidence is emerging showing the Importance of examples in

learning. Reder, Charney and Morgan (1986) for example, found that the most effective

manuals for Instructing students how to use a personal computer are those which contain
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examples. LeFevre and Dixon (1986) found that students actually prefer to use the

example Information and lgored the written Instruction when learning a procedural

task. Plrolll and Anderson (1985) also found that 18 of their 19 novices rely on analogies

to examples in the early stages of learning to program recursion. Besides these

laboratory findings, VanLehn (1986) also provided Indirect evidence that examples are

important In regular classroom learning. He found that 85% of the systematic errors In

arithmetic, collected from several thousand students could be explained as deriving from

some type of example-driven learning process.

On the other hand, although both students and Instructional materials rely heavily

on worked-out examples as an Instrument for learning, the empirical work which directly

examined the role of example solutions on problem solving found that students who have

studied examples often cannot solve problems that require a very slight deviation from

the example solution (Eylon & Helfman, 1982; Reed, Dempster, & Ettinger, 1985; Sweller

& Cooper, 1985). The discrepancy between students' better performance from text

materials that contain examples and the students' failure to generalize from examples,

may be caused by the degree to which students understand the examples provided.

Generally, In the empirical studies cited, no assessment Is made about how well students

understood the examples. As Pirolli and Anderson (1985) noted, although most of the

students wrote new programs by analogy to example programs, the success depenc:ed on

how well the students understood why the examples worked. Our work, in the domain

of mechanics, will shed light on the degree to which students understand an example In

relation to their ability to solve problems.

The method we use to study how students learn and understand an example Is via
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the explanations they give while studying it. Such self-explanations are important, we

propose, largely because examples typically contaix a sequence of actions, without much

explication of the rationale underlying the sequence of actions. Simon (1979), for

example, noted that:

Generally speaking, textbooks are much more explicit In enuuclating the laws

of mathematics or of nature than In saying anything about when these laws

may be useful In solving problems. The actions of the productions needed to

solve problems in the domain of the textbooks are laid out systematically, but

they are not securely connected with the conditions that should evoke them (p.

92).

We can provide a concrete example of the Inadequacy of worked-out examples by

taking one example from the fifth chapter of the Halliday and Res!' , text (1981), as

shown In Figure 1. We can see the lack of specification of the explicit conditions under

which the actions should be executed.

For example, It Is not clear in Statement 2 of this example-exercise why one should

Oconsider the knot at the junction of the three strings to be the body. This Is a critical

piece of Information because it Implies that at this location (as opposed to the block), the

sum of the forces is zero. Such lack of specification of the explicit conditions for actions

occurs throughout the example. In Statement 6, how does the student know that F A' FB'

and FC are all the forces acting on the body, and that there are no others? Statement 7

is essentially a restatement of Newton's First Law,' but it requires chaining several

inferences together, and translating them Into an equation (for example, because the
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Figure 5-6 Example 5. (a) A block of weight W is susended
by strings. (b) A free-body diagram sh~owing all the forces
acting on the knot. The strings are assumed to be weightless.

1. Figure "a8 shows in object of weight W hung by massless strings.

2. Consider the knot at the junction of the three strings to be "the body".

3. The body remains at rest under the action of the three forces shown

Fig. 5-8.

4. Suppose we are given the magnitude of one of these forcesi.

5. How can we ind the magnitude of the other forces?

S.F. A'TBI and F C are all the forces acting on the body.

7. Since the body is unaccelerated, .FA + F8B + F C 00

8. Choosing the x- and y-Lnes as shown, we can write this vector equation

us three scalar equations:

9. F A +F e - 0,

10. F Ay+F By+F -0
11. using Eq. 5-2. The third scalar equation for the c-axis is simply-

12. F A""F BS ,F C, 0 .

13. That is. the vectors all lie in the x-y plane so that they have no z

components.

14. From the figure we see that

15. F A - F A cos 30 -0.886FFA'

Is. F Ay- F Asin 30 -. 500F A
17. and

18. Fa -xF B Cos 45 iO.'.O7FBI

10. FBy - FS sin 4S 0.707 TB.'

Figure 1: A strings example, taken directly from Halliday and Resnick
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body is at rest, there are no external forces, therefore the sum of the forces on the body

must equal to zero). Statement 8 is totally unexplained; why are the axes chosen as

such? It Is clear that the solution steps within an example are not explicit about the

conditions under which the actions apply.

In order to learn with understanding, a student needs to overcome the

Incompleteness of an example by drawing conclusions and making inferences from the

presented Information (Wickelgren, 1074). To do so, a sturdent needs to provide

explanations for why a particular action Is taken. Only then will the student be able to

apply the acquired procedure to non-somorphic problems that do not match exactly the

conditions of the example solution. Thus, we suggest that a good student Ounderstands"

an example solution and will succeed In generalizing because he/she makes a conscious

effort to explain and extrapolate the principle, and to ascertain the conditions of

application of the solution steps beyond what Is explicitly stated. Consequently, we ask

In this paper how students can come to understand an example.

It Is difficult to define what OunderstandingO means In the context of learning from

examples. Operationally, our study was designed to assess understanding with three

measures: solution of Isomorphic problems, solution of far transfer problems, and

elaborations generated during studying examples. The weakest method to detect

understanding Is to observe how successfully students solve very similar problems, since

very similar problems can often be solved by a simple syntactic mapping of the example

procedure to the to-be-solved problem. Another method Is seeing If students can

successfully use the principle Involved in the example In a different and complex

problem, (far transfer), because such problems prevent students from being able to solve



8

them via a syntactic mapping. However, to a certain extent, studying far transfer reveals

only that understanding exists and allows one to see what conditions facil tate It.

The method which permits the most direct assessment of understanding of an

example is to examine the explicit elaborations that students provide while studying it.

Elaborating is a mechanism of study that allows students to explain, infer, and explicate

the conditions and consequences of each procedural step in the example. We postulate

that elaborations can reveal students' understanding by showing whether or not they

know (a) the conditions of application of the actions, (b) the consequences of actions, (c)

the relationship of actions to goals, and (d) the relationship of goals and actions to

natural laws and to other principles. This paper focuses primarily on the elaboration

results.

In the actual procedure used, we Invited students to explain to themselves what

they understand after every line of a worked-out example. Often they made no

comments at all. However, when they did generate a comment, this method allowed us

to yoke the explanation to the statement line in the example so that we could Interpret

their protocols more easily.

Method

Subjects

Eight students (3 males and 5 females) were selected from responses to a campus

advertisement. Six of them were working towards bachelor's degrees with varying

majors. Two of the 8 students had additional post-graduate training In psycholon'. None

of the students had a college physics course, although all of them (except one) had taken

high school physics, with differential performance (reported grade) in that course. We



Intentionally chose students with a range of abilities In terms of grade-point average o

that we could examine learner differences. Students were paid for their participation.

Procedure and Materials-

In the present paper we focus on how students study three worked-out examples of

problems dealing with the application of Newton's laws of motion and on how this Initial

learning relates to their subsequent problem solving. However, since the relevant

chapter demlands substantive background subject matter, the study of examples and the

problem solving tasks are embedded within a longitudinal study In which students In our

laboratory studied Newtonian Mechanics. Students learned the new material in a way

they would normally do when studying on their own, In terms of the amount of time

devoted to studying, the rate of self-pacing, and the use or studying habits, such as

highlighting significant parts of the text or rereading. The laboratory learning differed

from the way students would typically learn on their own In that all the learning took

place in the laboratory, and that students gave talk-aloud protocols while studying

examples and solving problems. The students spent between 8 to 29 hours to complete

the study, spread over several weeks. Figure 2 presents a diagram summarizing the

experimental procedure for the whole study. Basically, the study consisted of 2 major

phases: knowledge acquisition and problem solving.

Knowledge Acquisition

During the first part of the knowledge-acquisition phase, subj(,--ts studied the

necessary background subject-matter, covering the topics of measurement, vectors, and

motion in one dimension. These materials are covered In the first three chapters or

Halliday & Resnick. The fourth chapter on Motion in a Plane was eliminated because It

did not have direct bearing on learning Chapter 5, the target chapter on Particle
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Protests

Knowledge Aquisition

Blackground Knowledge

Chapter I Chapter 2 Chapter 3 Test

Target Knowledge

Chapter 5

Text [xape

Problem Solving

Isomorphic Problems Chapter 5 Prob~lems

String Incline Pulley

Simoliar

Changed
Gravity

Changed (12 oroblemsl (7 problemsl

Figure 2: A diagram depicting the design or the study

Dynamics. Decisions of this kind, as well as designing of questions and problems, were

made after consultations with physicists.
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For each of the three background chapters, students read through and studied the

chapter. They were requested to record on a separate sheet of paper any questions

which arose during their sudy. Each chapter also contained a note to stop and get the

experimenter In order to give a verbal protocol of one worked-out example. This protocol

was meant mainly as practice In giving protocols. When the students believed they were

ready to be tested on the material In the chapter, they notified the experimenter, and

were then required to produce correct answers to a set of Declarative, Qualitative and

Quantitative questions, given In that order. Declarative questions were designed to

assess the recall of critical facts from each chapter, e.g., iWhat Is the difference between

a scalar and a vector' Some of these questions came from the textbook and some were

designed by the experimenters. The Qualitative questions were designed to assess

reasoning and inferences about the concepts In each of the chapters without reference to

quantities, e.g., "Can an object have an eastward velocity while experiencing a westward

acceleration?" The majority of these problems were taken from the textbook, several

were generated by the experimenters. The Quantitative questions assessed procedural

skills for quantitative problem solving, e.g., OTwo bodies begin free fall from rest at the

same height, 1.0 sec apart. How long after the first body begins to fall will the two

bodies be 10 meters apart?: All of the Quantitative problems came from those presented

In the text at the end of the chapters.

After solving each problem set, students returned the problems to the experimenter

for grading. If no errors were made, they proceeded to the next set of questions. If an

error was made, the questions were returned for correction. The Incorrect answers were

identified and students were given references to those sections of the text which

addressed th,.ese questions. For incorrect Quantitative questions the correct final answer
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was also provided, analogous to the common practice of looking up the answer In the

back of the book. Students then attempted to correct the answers and resubmitted them

for grading. If there were still errors on the second try, students were provided with a

worked-out solution for the Incorrect answers. Students then studied the worked out

solution, and after it had been removed, were asked to change their answers and/or to

reproduce the correct solution from memory. If after these two tries the answer was still

Incorrect, the experimenter explained the worked-out solution and the student had to

reproduce it. Thus, the first three chapters, consisting of the background subject matter,

were studied until students could correctly solve a set of Declarative, Qualitative and

Quantitative problems relevant to each chapter.

During the second part of the knowledge acquisition phase, students studied the

target chapter on particle dynamics (Chapter 5 of Halliday & Resnick). Studying the

target chapter proceeded exactly as for the other chapters, except that students were

required to answer correctly the relevant Declarative and Qualitative questions before

studying the three worked-out examples. This was done to assure that the students had

acquired tl'e relevant declarative knowledge from the text.

The study of examples was the major focus of the knowledge acquisition phase:

students studied three worked-out examples, taken directly from the text. (See Figure 1

for an example of one of the worked-out solutions.) Each example solution represented a

Otype" of problem. There were three types: a strings, an Inclined plane, and a pulley

problem. (See Figure 3.)

Students talked out-loud while studying the examples, and their protocols were taped.
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Strings
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Pulley Y Y
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Figure 3: Diagram depictions of the three examples studied

L 

4 

~ 
~I 

.
.... 

..... 
.

... 
.... 

. .
.. .

.
. ................. 

... 
.

. . .
.



14

Problem solving

During the problem solving phase, students solved two main sets of problems. The

first ..ct consisted of 12 Ilsomorphic problemsO, with four problems corresponding to

each "type" of example (see the shaded areas In the problem solving phase of Figure 2).

These problems were specially designed by us so that they varied In their degrees of

similarity to the worked-out examples studied In the previous phase. Figure 4 shows one

set of isomorphs corresponding to the "strings example.

The second set consisted of seven "chapteru problems, which were problems taken

directly from the end of the target chapter. In terms of our criteria for Isomorphism to

example problems, these problems can be considered *far transfere problems. Students

solved both sets of problems while giving talk-aloud protocols, and no feedback was

provided. Only the problem solving protocols of the first set of three somorph problems

will be analyzed In detail for this paper.

Results

As Indicated, this paper will report on the results of the elaboration protocols while

students study the example solutions, presented In the target chapter, as well as how

they use the examples In the problem solving protocols of the isomorphic problems.

Individual differences will be reported by contrasting the performance of "good" and

"poor" students. These two groups were defined post hoc, using a median split on the

problem solving successes of our students on the 12 iso.,norphic and the 7 chapter

problems. In scoring the problems, arithmetic slips were not considered as errors and

partial solutions were credited proportionally. All problems received the same weight, so

that the maximum score for the isomorphic problems was 12 and the maximum score for

the chapter problems was 7. (All scoring, Identification and classification of protocols
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A block is hangi1ng from three stringx. If the tenSIOU In string I Is IS N. what is the mas
of the block?

Similar

The block pictured 13 hanging from 3 strings. The mass of the block Is 10 kg. If the

acceleration dug to gravity was reduced to 1/2 of it3 normal value, what would the tension In

rope A be? !s

70' 6C'

Changed Gravity

A balloon Is being held down by three massless ropes. Ifth~e balloon i3 pulling up with a
fore* of 300 N. what would the tension In rope A be?

Changed Force DiretonAA

Three forces are holding a 800 kg block MOtUonles on a fr:c~iOOleg surfice. Itftorce A 13
40 N. What would force C be?

New Surface

Figure 4: The set of four lsomorPhs to the strings example

were performed by two judges, with a mean lnterratei reliability across all the analysis

ranging between 86% and 94%.)

There were four students In each group. The mean success of the Good students

was 82% (06% for the isomorphic problems and 68% for the chapter problems). The
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mean success of the Poor students was 46% (62% for the isomorphic and 30% for the

chapter problems).

Learning from Examples: Elaboration protocols

Amount of Elaborations Generated: Unit of Analyses.

Our first analysis began with a very gross count of the amount of elaborations

students provided while studying the example solutions. An elaboration is a generic term

we use to indicate any statement made that is not a first reading of an example line, nor

is it any conversation carried on with the experimenter that does not refer to the subject

matter of the example, such as *Do you have a calculator that I can use?', nor is it a

response to the experimenter's requests to speak louder. Figure 5 is a transcript of one

student's elaboration protocol. During the transcription, segmentation was made roughly

at pause boundaries. We also assigned a line number to each line of the protocols.

Counting each line that is not a reading or experimenter's comment as a line, this

example shows a total of 13 lines. Notice that because we are not using sentence

boundary as a line boundary necessarily, a short comment such as "Okays is counted as

one line, since it is inserted between different activities, such as reading.

Table I shows the average number of lines generated per example by the Good and

Poor students, as well as the average amount of time it took them to study an example.

These differences are contrasted with the average number of protocol lines generated and

the amount of time taken to solve an Isomorphic problem: The Good students generated

a considerably greater number of elaboration lines than the Poor students (142 lines vs.

21 lines, t(6) = 1.97, p < 0.05). These elaboration activities necessarily led the Good

students to spend more time on each example as well (13 min. vs. 7.4 Min., t(6) = 2.16.

p .05).
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Read Line 6: Fa, Fb, and Fc are all the forces
acting on the body. (pause)

(I) Elaboration: Monitoring 1) Okay.

Read Line 7. Since the ... (pause)

Experimenter: (Okay, what are you thinking about?)

(II) Elaboration: Monitoring 2) I'm trying to think where Forces Fb and Fa
3) are going to get the thing.

(III) Elaboration: Explanation 4) They'd Just be the force, the rest mass of
5) the thing holding It up would be the force.
6) It could, well, actually It'd be the force of

weight.

(IV) Elaboration: Explanation 7) Cause being upheld by ... It's the resistance

8) to weight W.

(V) Elaboration: Explanation 9) It would all be equal.
10) The change In the uh, negative Y will the...

(VI) Elaboration: Explanation 11) The force of negative Y will be equal to

12) the force in the positive Y.

(VII) Elaboration: Explanation 13) And they'll all equal out.

Figure 5: An example of a transcript of example-studying protocols (S101)

We rule out the possibility that Good students are simply more articulate or fluent,

thus producing more eliborations, since, In contrast, the number of lines they generate

while solving problems is approximately the same as the Poor students (141 vs. 122 lines

per problem, see Table 1, bottom). This suggests that the students generate as many

lines of protocols as they deem necessary In order to learn the example. Likewise, the



18

Table 1

Amount of Elaboration Generated While
Studying Examples and Solving Problems

GOOD POOR

Example- No. of Lines 142 21
Studying
Protocols No. of Min. 13 7

No. of Statements
or Single Ideas 51 18

Isomorphic No. of Lines 141 122
Problem
Solving No. of Min. 13.8 14.3
Protocols

Note. The numbers represent averages per student per example.

fact that the Good students took more time studying each example solution than the

Poor students (13 mnn. vs. 7.4 min.) also reflects their choice 'co spend more time on each

example, rather than a tendency to dwell unnecessarily on the examples, since the

amount of time they spent solving cach Isomorphic problem Is about the same as the

time spent by the Poor students (13.8 min. vs. 14.3 min.).
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The assumption we make, that elaborations are Zenerated If some knowledge or

Inference Is being precetsed or constructed In memory, Is no different than assumptions

made with reference to other types of dependent measures. For example, the assumption

underlying protocol analyses Is that the problem solver Is saying what he Is thinking

about or dumping the content of his/her working memory. Thus, longer protocols simply

refer to a greater degree of processing. Similarly, In research using eye movement

protocols, the assumption Is that the student is processing the location at which he/she is

fixating (Just & Carpenter, 1976). Thus, longer fixations Imply that the student is

spending more time processing that location. Therefore, we view the greater amount of

elaboration produced by the Good students as a natural consequence of wanting to

understand the solution example better, rather than the possibility that they are more

articulate and fluent.

It might be claimed that the reason that Good students learned more is just that

they spent more time studying. However, this is not a very deep explanation, but merely

a restatement of the correlation. The Important question Is what the Good students did

while they were studying. As will be seen shortly, there are such large qualitative

differences In what students did while studying examples that the simple, shallow,

explanation--that studying twice as long makes one learn twice as much-is quite

implausible because it cannot explain the other differences in students' learning behavior.

However, although we claim that longer protocols do not necessarily imply

verbosity, using lines as a unit of analysis does not seem adequate for capturing what Is

going on. That is, an analysis at the level of lines is too fine-grained to characterize the

nature of these comments. Instead, many lines seem to refer to a single Idea, and thus
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we further collapsed the lines into units expressing a single idea. For example, the 13

protocol lines in Fig. 5 have been recoded Into 7 elaboration estatements= (I-VII). Thus,

basically the boundaries were placed on the basis of different ideas, pauses, or different

sort of activities Including reading or experimenter's Interjections.

Using this sort of parsing, we see In Table 1 that Good students* protocols have

been reduced from 142 lines to 51 statements and Poor students' protocols remain

roughly the same (that is, 18 statements vs. 21 lines). Thus, in a sense we are penalizing

the Good students for being articulate. What the data actually shows is that the Good

students often elaborate quite a bit on a single idea either because they realize that they

do not understand it or they want to provide a more complete explanation (see next

sections), or the Ideas are Just harder to explain succinctly. Lewis and Mack (1982) have

also noticed that learners often spontaneously offer explanations of why things happened

the way they did. Even with this unit of analysis, the Good students elaborate

significantly more frequently than the Poor students (51 vs. 18, t(O) = 1.98, p < .05).

Henceforth, all analyses will be based on the number of single Ideas or statements.

Kinds of Elaborations Generated.

Elaboration statements can be classified into three types. (See Fig. 6 for a

breakdown of all the classifications to be discussed.)

An elaboration is considered to be an explanation If it says anything substantive about

the physics discussed In the example statement. The following comment would be

considered an explanation:

"Ummm, this would make sense, because since they're connected
by a string that doesn't stretch.'
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Elaborations

Explanations Monitoring Statements Others

Structures Content Understanding Comprehension Paraphrases Mathematical Metastrateqy

Failures Elaborations

Ju$1iCation Diagramatic Others Newton's Laws/ Statement

Relinel Explicate/ Impose Give meaning
expand infer a goal to quantitative

conditions consequences expressions

Figure 6: A classification scheme illustrating be decomposition of
the analyses of the protocols.

or

'If the string's going to be stretched, the eart 's going to be moted,
and the surface of the incline is going to be depressed.'

Other examples can be seen in Figure 5.

An elaboration is considered a monitoring statement If it refers to states or

comprehension. For example, remarks such as:
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'I can see now how they did it'

or

'I was having trouble with F-rngsinO - 0'

would be considered monitoring statements.

A third category Includes several other types or statements, mostly paraphrasing,

mathematical elaborations, and metastrateglc statements. Paraphrasing would be

comments that restate what the example line said. For example, a student who read the

example line

Notice that the magnitude of T is always intermediate
between the weight of m I and the weight of m.

remarked that

'Tension is always intermediate between the two...'.

Such a statement would be coded as a paraphrase. Another example would be the

remark

'There are no more forces'

after reading the example statement

Fa, Fb, and Fc are all the forces acting on

the body.

A mathematical elaboration would be a statement such as
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'If this is the sine of 45 degrees, then this is the cosine
of 45 degrees

And a metastrategic statement concerns what the students are doing or planning to do,

such as:

'I'm going to look at the diagram'
'I'm going to reread it'
'This is something to remember'.

Table 2 shows the distribution of the three categories of statements for the Good

and Poor students.

Looking at Table 2, one can see that although the Good students produced a

significantly greater total number of elaborations (50.9) than the Poor students (17.5),

they do not differ in the distribution of the proportion of ea-h type of elaboration they

provide. This similarity in the distribution suggests that the difference between the Good

and Poor students may Just be a quantitative one, so that a simple remedial treatment

for the Poor students Is simply to ask them to spend more time and effort at producing

elaborations. However, closer examination of each of the categories suggests that the

difference Is not a straightforward quantitative one. Below, we analyze the differences In

the structure and content of the Explanations, as well as differences In the Monitoring

Statements.

Analyses of Explanations.

Of all the elaboration statements produced by the Good students, 31c- are

explanations relating to the physics content as compared to 2. for the Poor students.

Even though both groups produced proportionately a similar amount of explanations, the
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Table 2

Types of Elaborations

GOOD POOR

Prop. Freq.' Prop. Frecz.*

Physics
Explanation 31% 15.9 24% 4.3

Monitoring
Statements 39% 20.1 42% 7.3

Others
(Include
Paraphrase) 30% 14.9 34% 5.9

Total 100% 50.9 100% 17.5

*An average number of statements per student per example.

absolute number of these explanations Is significantly different between the two groups

(15.9 per example vs. 4.3, F(i,6) = 7.25, p <.05). Also, the correlation between the

number of physics explanations and the subsequent success In solving the isomorphic

problems is very high (r .76, p < .05). Thus it seems that these explanations play an

Important role In learning from examples.

Structure of the Explanations. One way to analyze the explanations students
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provide upon studying example statements is to analyze the structure of their

explanations, by which we mean the form or purpose of what they say. Since our

conjecture in this research was that students often fall to understand example solutions

because the example provides neither a clear specification for why each procedural step

Is taken nor an explication of the consequences of each step, this would imply that if

students do understand an example solution well, they themselves must explicate the

conditions and consequences of each solution step. Hence, we attempted to capture this

characterization in the choice of the analysis categories. Analyzing the physics

explanation statements, we could classify them Into two major categories: Justifications

and diagrammatic statements (see Fig. 6 again). Diagrammatic statements are

statements that basically describe In words what was depicted in the diagram. For

example, a statement made by a student In reference to the diagram depicted in Figure 1

was:

'Okay, so three forces are on the two strings
and from the string going down to the object.

Justifications on the other hand, are explanations that either:

1) Refine or expand the conditions of an action. For example, in response
to Line 18 of the Inclined plane example, which stated that

It is convenient to choose the x-axis of our reference frame
to be along the incline and the y-axis to be normal to the
incline

student Silo explained the conditions of such a choice by saying:

'and it is very, umm, wise to choose a reference frame that's
parallel to the incline, parallel and normal to the incline, because
that way, you '1 have to split up mg, the other forces are already,
component vectors for you.'
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2) Explicate or Infer additional Implications of an action. In response
to the same line In the Inclined plane example, student SP2 would say:

'So we can save 1 force...we save the F force. We save

it so, that I don't have to calculate it by, with angles...
So we can save two forces. Partitioning of two forces.

3) Impose a goal or purpose for an action. In response
to the same Line 18, again, Silo said:

'Basically it looks like they are going to split up these three
forces into their respective components.'

4) Give meaninz to a set of quantitative expressions. In response to

Lines 13-16 of Fig. 1, which simply states two equations,
student S110 stated:

'Umm, and looking along, they've done the same thing for FsubB.

They've separated it into its components, into its component vectors,

and they are basically able to figure out umm,
the tension in each of the strings and how much W weights providing
that... '

Another student (SF1) responded similarly by saying:

'Now they are going to do the same thing

with it to the Y'.

These latter two quotes show that not only can students understand In a sense the

meaning and purpose of the quantitative expressions (which Is a procedure for

decomposing the forces), but they are also basically provid!ng a goal for the set of

actions. They refer to the goal of the equations as the Osame thingm.

Table 3 shows the distribution of the two kinds of Explanation btatements. As can

be seen, almost all of the Good students' explanations (9801 or 15.5 statements) are of

the Justification kind, whereas a fairly high proportion (.35%) of the Poor students'

explanations are diagrammatic statements. (The Interaction Is significant at the .01

level, F(1,6) 20.55.) The characteristic of the diagrammatic statements Is that they do
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not necessarily add any new information. In some sense, they are paraphrasing into

words what is shown pictorially, whereas the justifications are explanations of various

sorts as discussed above. Diagrammatic statements were classified as MexplanationsO

rather than included in the Oother" category since they were not paraphrases of textual

statements.

Table 3

Kinds of Explanation

GOOD POOR

Prop. Freq.* Prop. Frec.

Justifications 98% 15.5 65% 2.75

Diagrammatic
Statements 2% 0.3 35% 1.5

Total 100% 15.8 100% 4.25

*An average number of statements per student per example.

Content of the Explanations. So far, we have just given a characterization of the

structure of the explanation statements. A majority of the explanations justify actions
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stated In the text: they refine or expand the conditions of an action, explicate the

consequences of an action, provide a goal for a set of actions, and explain the meaning of

a set of quantitative expressions. However, there Is an important difference in the Good

and Poor students' explanations that is not easily captured by assessing the structure of

what they say. This difference requires an analysis of the content of the explanations.

We can first give a descriptive analysis of the difference between the Good and

Poor students' justifications by contrasting the following explanations generated after

reading the equation from the Pulley example:

T-mg= mI

A poor student (S109) comments:

'OK, cause the acceleration is due to gravity.'

This comment, at best, Is an Incomplete statement. It does not capture the Interrelation

between the force of tension and the force due to gravity. On the other hand, a Good

student (SPI), in response to the same example line remarks:

'OK, so its basically a way of adding them together and seeing if there is
anything left over. And if there is anything left over, it equals the force:
mass times acceleration.

Such a comment is not only more complete, but It shows that the Good student is trying

to understand the example by relating the example statements to explanations and

principles stated in the text, and understanding how one example statement follows from

the previous one(s). This Is typical of Good students' explanations.
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Our descriptive analyses of the nature and content of the explanations so far

indicate that the Good students seem to generate explanations which relate to the

principles stated in the text, as well as relating the consecutive example statements to

each other (as when they impose a goal on a set of actions, or give meaning to a set of

quantitative expressions). We can further capture the degree to which students'

explanations reflect the principles learned from the text by Judging the extent to which

explanations can be said to be guided by these principles. For example, the following

response to Line 3 of Figure 1:

'So that means that they have to cancel out, only the body wouldn't be at
rest."

would be Judged to be guided by Newton's First Law that If there is no motion, then the

sum of the forces must be zero. Thus, to increase the rigor of our analyses, we further

restricted our analyses to only those explanations that are derived or Interred from

Newton's Three Laws. About a third of the Good students' explanations (4.75 out of

15.8 statements) could be derived from or referred to Newton's Laws, whereas nearly

none of the Poor students' explanations (0.7 out of 4.25 statements) related to any of

Newton's Laws.

One might think that more of the Good students' explanations are derivable from

the principles in the text than the Poor students' explanations because the Good students

have understood the principles better prior to studying the examples. This Interpretation

can be ruled out by examining the content of the students' responses to the Dec!arative

questions administered prior to the studying of the example-exercises. Recall that the

students had to be able to answer a set of Declarative questions to the satisfaction of the
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experimenters before they could proceed to the example-studying phase of the study.

One part of this declarative test asks the students to state in their own words Newton's

Three Laws. We analyzed those responses using the same analysis used in the Chi, Glaser

and Rees (1982) Study Six. In this analysis each of the Newton's Laws was decomposed

into several subcomponents. For example, Newton's Second Law, F=ma. has been

decomposed into four subcomponents:

1. Applies to one body

2. Involves all forces on the body

3. Net force is the vector sum of all the forces

4. F=ma, or the magnitude of F Is ma. and the direction of a is the same as F.

Using these components as a scoring criterion, It can be seen in Table 4 that for the

answers to the Declarative questions, both the Good and the Poor students encoded 5.5

components (out of a total of 12 possible components for the three Laws). Thus. before

studying the examples, the two groups do not differ in the amount of declarative

knowledge that they have encoded.

In order to compare the student's Initial understanding of the Three Laws with their

subsequent understanding as manifested in the explanations, we used the same

component analysis to code those explanations which were previously judged to be

derivable from Newton's Three laws. Within these subsets of explanations, the Good

students verbalized 5.5 components of the Three Laws whereas the Poor students only

stated 1.25 components (t(e) = 2.14, p<.05).
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Table 4

Number of Components of Newton's Three Laws (Out of 12)

GOOD POOR

Declarative Test 5.5 5.5

Explanations 5.5 1.25

New Components 3.0 0.25

Note. The numbers represent averages per student.

What is most remarkable is that for the Good students, 3 out of the 5.5

components stated In the explanations are distinct from those previously mentioned in

the answers to Declarative questions. In other words, while example-studying, the Good

students gained 3 additional components of the Three Laws. For example, three out of

four Good students inferred or understood the second component, that the force

"involves all the forces on the body.' This particular component of the Second Law was

not mentioned Initially by any of the Good students In the answers to the Declarative

questions. However, self-explanations produced while ,tudying the examples obviously

instantiated this point. This suggests that the Good students can learn from the

examples, perhaps because the examples Instantiate components of the Laws that were

not particularly salient from reading a declarative description of It In the text. Perhaps
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also, this is why the Good students feel so compelled to mexplain while studying, since

they are learning and encoding new knowledge.

The Poor students, In contrast, hardly added any new components to what they

already knew (0.25 new components, see Table 4). The difference In the number of new

components added Is significantly different between the Good and the Poor students (t(6)

= 3.67, p<.01). None of the Poor students articulated, for example, the second

component of Newton's Second Law, In either their explanations or their declarative

answers. Thus, the Poor students did not add much new knowledge to what they

already knew about the Three Laws, and further, did not use what they did know.

Summary. Our analyses of explanations show that not only do the Good students

produce a significantly greater number of explanations, but their explanations consist

almost entirely of justifications which offer Inferences about the conditions, the

consequences, the goals, and the meaning of various mathematical actions described In

the example. On the other hand, over a third of the Poor students' explanations are

diagrammatic statements which do not add any inferences to what is already described.

Furthermore, the explanations that the Good students provide are largely guided by the

principles, concepts, and definitions introduced In the text.

We found that both the Good and the Poor students had basically the same

understanding of these Three Laws Initially, In terms of the number of components of

the Three Laws that they understood, as cited In their answers to Declarative questions.

(According to Greeno & Riley, 1987, explicit verbalization Ls the strictest criterion for

assessing understanding of a principle). The self-explanations provided by the Good
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students while studying the examples made their understanding of the principles more

complete (8.5 out of 12 components). For example, after their self-explanations, the

Good students understood 3 out of the 4 components of Newton's Second Law (the only

component missing Is the first one), whereas prior to that, they only understood one of

the four components (the last one). In contrast, since the Poor students did not provide

many explanations, they did not advance their understanding of the Laws after studying

the examples (5.75 out of 12 components). For example, for the Second Law, no new

component was added to what they already knew (which was only the fourth component

of the Second Law). Hence, their understanding of the Second Law after studying the

example was just as incomplete as it was before studying the example. In fact, they did

not use as many components In their explanations as they could have from their initial

understanding.

Since all the students seem to have encoded the same number of components of the

Three Laws initially, we are assured that the students did acquire the same amount of

relevant knowledge from the chapter. In particular, the Good students did not have a

better understanding of Newton's Laws prior to studying the examples. However, we

further propose that by the time students attempt to solve problems, their

representations of the principles and other declarative knowledge introduced In the text

will differ depending on the degree to which their understanding of the principles is

enhanced during their studying of examples. Such an Interpretation Is consistent with

the findings showing that students prefer text materials that contain examples (Reder et

al., 1986; LeFevre & Dixon, 1986). Thus, even though both the Good and the Poor

students can begin problem solving by applying general weak methods (the process of

proceduralization, Anderson, 1987), the Good students will achieve greater success in

IL
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solving problems since an instantlation of the weak methods depends on the

representations of their declarative knowledge, which is more complete. Thus, example-

studying Is a critical phase of skill acquisition.

it Is Interesting to compare these findings to our expert-novice results, In which the

experts cited many more components in their summaries of Newton's Three Laws than

the novices (Chi, et.al., 1982). In contrast, before studying the examples, our Good and

Poor students did not differ in their declarative understanding. Both groups have

relatively poor understanding. As a result of differential learning from examples, the two

groups developed knowledge differences which are compatible with differences we found

between experts and novices. This suggests that experts became that way not because

they were better at encoding the declarative knowledge, but their greater understanding

was probably gained from the way they studied examples and solved problems.

While we do not understand the mechanism underlying self-explanations at this

point, it is clear that self-explanations not only construct better problem solving

procedures, but they also help the students understand the underlying principles more

completely. (More speculations about the mechanisms of self-explanations will be

presented In the Discussion).

Monitoring Statements

So far, we have found that the Good students tend to explain an example to

themselves (more so than the Poor students), and that these explanations are

manifestations of learning that the Good students are undertaking while studying. The

Poor students are not learning, at least not learning the components of the Three Laws,

while studying the examples. Another possibility for why the Poor students are not
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elaborating Is that they may not realize that they do not understand the material;

another possibility is that they may actually think that they do understand the material,

thus they need not elaborate. To see If these conjectures are viable, we have examined

the kind of elaborations that have been categorized as monitoring statements. As we

noted earlier In Table 2, around 40%1o of the elaboration statements are of this kind (39%

for the Good students and 42% for the Poor students).

Monitoring statements can be further broken down Into those that Indicate that

the student understood what was presented in the example line (such as *Okay,6 or *1

can see now how they did It8) and those that Indicate that the student railed to

understand (usually questions raised about the example line, such as wl7zy is mgsin&

negative?'). By examining the proportion of each type of monitoring statements. (see

table 5), it seems that the Poor students detect comprehension failures less frequently

than the Good students. Thus, the Poor students, within each example, generated an

average of only 1.1 statements indicating that they failed to comprehend a line; whereas

the Good students generated an average of 9.3 such comments (t(6) = 2.32, p<.05).

Common sense would have predicted that the Poor students should have detected

comprehension failures more frequently, rather than less frequently, since they were less

successful at solving problems than the Good students.

Why Is It Important to be able to detect comprehension failures? We surmise that

It Is Important to be able to detect comprehension failure; In order for students to know

that they ought to do something to try and understand. One way to assess this is to

look at the frequ,,ncy with which a detection of comprehension failure Is followed by

vxplanatIons. Indeed, for both the Good and Poor students, detections of comprehension
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Table 5

Monitoring Statements

GOOD POOR

Prop. re.rop. Fre.

Comprehension

Failure 46% 9.3 15% 1.1

Understand 53% 10.8 85% 6.2

Total 100% 20.1 100% 7.3

*An average number of statements per student per example.

failures do initiate explanations, although more so for the Good than for the Poor

students, both proportionately and on an absolute basis. Eighty-five percent (or 8.0 out

of 9.3 statements) of the Good students' and 60% (or 0.6 out of 1.1 statements) of the

Poor students' detection of comprehension failure is followed by explanation, (F(2,12) =

12.5, p < .01). These results suggest that one crucial advantage of the Good students is

in their ability to spontaneously Identify the loci of their comprehension failures, which

in turn Initiate the necessary Inferencing process.

Not only do the Poor students often fall to realize that they do not understand, but
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on the few occasions that they do think they do not understand, these occur strictly at

loci of quantitative expressions, whereas only half of the Good students' detection of

comprehension failure arise from such loci. The other half reside In places where we

believe important physics principles and concepts are being explained. Our favorite

example is the third line In Fig. 1,

Consider the knot at the junction of the three
strings to be the body.

At this location. 3 of the 4 Good students Indicated comprehension failure, whereas none

of the Poor students did. (This is a critical piece of information because it tells the

student that the knot and not the mass of the block, should be the center of the

reference frame at which all the forces have to sum to zero.)

There Is also a qualitative difference in the kind of questions that detection of

comprehension failure raises. For example, Poor students, when detecting their failure to

comprehend, often state their lack of understanding in a general way, such as:

'Well, what should you do here?'

or restate the equation that they do not understand, such as:

'I was having trouble with F-rngsin6O---'O .

On the other hand. the questions that the Good students raise are specific Inquiries about

the physical situation described In the example. For example,

'I'm wondering whether there would be acceleration due to gravity?'
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or

W1hy the force has to change?'

Thus, It appears that the specific questions that the Good students pose can be answered

by engaging in self-explanations, since the processes of self-explanations are essentially

the processes of inferring the conditions and consequences of actions, inducing goals, and

so on. On the other hand, the general lack of understanding as posed by the questions of

the Poor students cannot be resolved by engaging In self-explanations.

In summary, the analyses of the monitoring statements essentially show that the

Good students realize that they do not understand more often than the Poor students.

The Poor students, in fact, seldom detect comprehension failures. When they do, it

always occurs at loci of quantitative expressions. The ability to detect comprehension

failures is important because such states (or incomprehension) tend to initiate

explanation. When the Poor students do detect comprehension failures, their sense of it

Is vague and general, whereas Good students ask very specific questions about what they

don't understand. These specific questions can potentially be resolved by engagng in

self-explanation. In short, the Poor students seem oblivious to the fact that they do not

understand, In part because they only have a superficial understanding of what they

read. In the next section, we will discuss how these different patterns of learning dictate

how examples are used during problem solving.

Problem Solving Protocols and References to Examples

We now turn to our analyses of student's problem solving protocols with reference

to the use of examples for the 12 Isomorphic problems (4 per each of the 3 example
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problems in the text). A global analysis is to examine the extent to which Good and Poor

problem solvers use examples. References to examples were Identified In three ways: (a)

the student could make explicit remarks such as, ONow, I'm going to look a* the

example.'; (b) the student could be looking at the example, rereading some of the

example lines; and (c) the student could respond that she/he is looking at the example if

the experimenter probed and asked what she/he was doing.

Both the Good and Poor students use examples frequently. The Good students

referred to the examples in 9 out of the 12 isomorphic problems, and the Poor students

referred to examples In solving 10 out of the 12 problems. Thus, at this global level, of

whether or not students reference examples, our finding is consistent with those of Pirolli

and Anderson (1985), as well as with the common intuition that students do refer to

examples In learning to solve problems. However, a more detailed analysis shows that

they reference examples In a very different way.

Reference to Example Episodes

At a more detailed level, we analyzed the number of gepisodesO in which students

refer to examples within each problem solving protocol. Only the first set of three

isomorphic problems (one per example) are used for this analysis. We analyzed only the

first set because we were Interested In the students' initial use and reliance on the

studied example; subsequent problem solving could have benefited from using procedures

that were learned while solving the first set.

We can classify example usage Into three categories: (a) Reading, (b) Copy and

Map, and (c) Compare and Check. A Read episode is simply when students reread

verbatim one or more example lines. A reading episode Is marked by a reference to the
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example, reading some consecutive lines (with or without comments Inserted), and

terminating when the student goes back to solving the problem. Copy and Map, episodes

are instances where the student copies from the example either an equation, labels from

the diagram, the free body diagram Itself, or the axes. The following quote for student

S105 would be coded as mapping:

'OK, so choosing the axis from the diagram, it would be better to tilt it 30
degrees.'

Compare and Check episodes are those In which the student turned to the example to

check a specific subprocedure or a result, either before or after an Independent attempt

on the solution. For example, one of the students (SP1) forgot what the units for weight

were after resolving two vectors Into four components and referred back to the example

with the comment

'In the example problem, how did they refer to weight?'.

Table 6 shows the mean number of episodes or each kind for the problem solving

protocols of the first set of Isomorphic problems. Although we showed earlier that at a

global level, both the Good and Poor students use examples equally often, this more

detailed analysis shows that within a problem solving protocol, the Good students do

refer less often to examples than the Poor students (2.7 episodes per problem vs. 6.6

episodes per problem), although the difference is only margiitally significant (F(1,6) =

3.46, p < .10). (It Is difficult to obtain dramatic differences statistically because the

grain-size of this particular unit of analysis--the number of episodes-is rather large.)

The less frequent references to the example suggest that the Good students probably

have extracted more out of the examples while studying It (as evidenced by the greater
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amount of elaboration), so that they may not need to refer to It as often during problem

solving.

This interpretation Is supported further by comparing the different kinds of

reference to example episodes. The distribution of the different episodes is significantly

different for the two groups (F(3,18) - 3.81, p < .05 for the Interaction), predominantly

because there Is a substantial difference in the number of Reading episodes between the

Good and Poor students (0.6 vs. 4.1, HSD p < .05, Tukey test). That is, consistent with

our Interpretation, because the Poor students did not get much out of the examples when

they were studying it, they now need to re-read them. (See Table 6). There are no

differences In the number of Map and Check episodes.

We further suggest that the Poor students need to reread the examples not only because

they did not get much out of It while studying, but that they are using the examples to

"find a solution'. This can be seen by the number r, lines that students read within

each Reading episode. The Poor students read, on average, a larger number of example

lines per episode than the Good students (13.0 vs. 1.6 lines, F(3,18) = 11.1. p < .01).

This difference also suggests that the function of the rereading for the Good and Poor

students Is different. The Good students seem to reread one line In the example as a way

to locate certain relevant Information they need In order to check and compare their

solutions, whereas the Poor students reread several lines until they encounter an
0

equation that they can map. Once they come to the relevant Information, the Good and

Poor students use the same number of lines for mapping (1.3 and 1.5 lines respectively)

and for checking (0.5 and 0.3 respectively).
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Table S

Use of Example durins Problem Solvins

GOOD POOR

No. of Episodes
Per Problem

Read 0.6 4.1

Map 1.1 2.1

Check 1.0 0.2

Total 2.7 6.6

Within Each Read

Episode:

No. of Lines

Read: 1.8 13.0

Loci of Equation first line
Entry: or FBD

Note. The numbers represent averages per student per problem.

The fact that Good students reread a specific line in the example while solving a

problem suggests that they consult the examples after they have a plan or formulated an
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idea on how to solve the problem, whereas the Poor students use the examples as a way

to find a solution that can be copied. Another way to support this conjecture Is to look

at the location at which students begin reading the example lines. All the Poor students,

for their first encounters with problem solving (during the first somorphic problem),

started rereading the example from the very first line; whereas none of the Good

students started reading from the beginning. The Good students' first interactions with

an example usually consisted of referring to an equation or to a free-body diagram.

The contrast In our Interpretation can also be substantiated by the goals the

students state while referring to the examples. Good students usually enter examples

with a very specific goal. One student (SOl), for example, said while referring to an

example line:

'I'm looking at the formula here, trying to see how you solve for one (Force

1) given the angle',

whereas Poor student refer to examples with a general global goal, such as:

'hat do they do?'

then proceed to read the first line.

Learning From an Example During Problem Solving

Since the Poor students spend a considerable, amount of effort re-reading the

examples while solving problems, It may be that some students prefer to learn In this

context, while others prefer to study without a specific problem solving goal. To

evaluate this conjecture, we looked for explanations generated during reference to

example episodes within the problem solving protocols of the first set of Isomorphic
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problems for each of the three examples. Table 7 shows the number of each kind of

explanations, using the same taxonomy we used earlier (see Table 3).

Table 7

Frequency of Explanations Generated While
Referring to Examples in the Context of
Problem solving

GOOD* POOR

Justification 2.0 2.5

Diagrammatic
Statement 0.25 0.25

Total 2.25 2.75

Note. The numbers represent averages per student per problem.

*Only one Good student provided explanations.

First of all, even though the Good students had as many explanations as the Poor

students. (2.25 vs. 2.75). all the explanations of the Good students were generated by one

student (Sl1O) who had generated the least amount of explanations while studying

examples. Many of the explanations provided by the Good students (as shown in Table

3) were generated by only three out of the four Good students. Hence. this particular
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Good student (Silo) does fit our conjecture that some students prefer to explain while

studying and others prefer to explain while solving problems. However, the amount of

explanations provided by the Poor students In the problem solving context is nowhere

near the level that the Good students generated while studying examples (Compare

Table 7 with Table 3). If we combine the results of the explanation data generated

during problem solving together with those generated during studying, (i.e., Tables 3 and

7), the resulting table will have exactly the same pattern as Table 3.

Discussion

Our research queried the extent to which individual difference In learning to solve

problems is attributable to difference in the way knowledge is encoded from the

example-exercises. We found, In general, that Good students (those who have greater

success at solving problems) tend to study example-exercises in a text by explaining and

providing JustificatIons for each action (i.e., their explanations refine and expand the

conditions of an action, explicate the consequences of an action, provide a goal for a set

of actions, relate the consequences of one action to another, and explain the meaning of a

set of quantitative expressions). More importantly, their explanations relate the actions

to the principles and concepts in the text, which in turn further enhance their

understanding of the principles. Essentially, Good students read the example with

understanding. Poor students do not often explain the example-exercises to themselves.

When they do, their explanations do not seem to connect with their understanding of the

principles and concepts In the text.

Good students can also accurately monitor their comprehension failures and

successes, while studying examples. This Is consistent with what is generally found in

the literature (see Brown, Bransford, Ferrara & Camplone, 1983). They seem to detect
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accurately when they do and do not understand. Such accuracy In detection is extremely

important because it leads to an attempt to try and -understand the material. Poor

students, on the other hand, seem less accurate at detecting comprehension failures.

When they do, these occur where mathematical expressions are being manipulated,

rather than at places where conceptual principles are being Instantiated.

Finally, we found that the Good students used the examples In a very different way

from the Poor students. In general, Good students, during problem solving, used the

examples for a specific reference, whereas Poor students reread them as If to search for a

solution. This interpretation is consistent with the following set of behaviors. First,

Good students refer to the examples less frequently than the Poor students, within each

solution attempt. Second, when they do refer to the examples, Good students read only

one or two lines, whereas Poor students read around 13 lines. The Good students read

only one or two lines because they have a specific goal in mind. Once they found what

they needed from the examples, both the Good and Poor students can adequately map

the example and check It for accuracy. These differences In the ways Good and Poor

students use examples suggest that the Good (but not the Poor) students have

understood the examples when they studied It, as a consequence of the explanations they

generated, and now can use the examples as a reference.

Our results stand In contrast to the mixed results often obtained In research

examining the role of elaboration In problem solving. It has sometimes been found that

elaboration generally do not facilitate problem solving (Reder et al, 1986; Reed et al.,

1985). The difference between these studies and the present one Is that we examine the

elaborations and explanations students spontaneously produced, whereas these other
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studies provided the elaborations for the students to read. The difficulty of interpreting

results of a study which provides the elaboration is that when it falls to facilitate

problem solving, one cannot know whether the elaborations themselves are inadequate,

or whether providing elaborations is futile.

Although the task in which we observed learning was how students studied

example-exercises, we believe that our results generalize to how good and poor students

learn many kinds of materials, such as declarative text (Bransford, Stein, Vye, Franks,

Auble. Mezynskl. & Perfetto, 1982), diagrams, tables, charts, and so on, as well as

solving other types of problems. In fact, our results are reminiscent of an earlier study by

Gagne and Smith (1962) which showed that asking students to verbalize while they solve

a 3-disc puzzle-type problem correlated significantly with success at solving problems.

Although Gagne and Smith did not report individual differences, they were able to

categorize the protocols Into 4 types:

1) those which oriented toward single moves In the solution of the problems, with

explanations such as:

'only possible move"

'Just to try it'
'don't know'

2) those which anticipated to the extent of two moves, with comments such as:

"To get at the larger disc'
'to free up a space"

3) reasons which anticipated sequences of moves, such as:
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Rmove as with a three-disc sequence
'if disc is odd-numbered, move to circle B'

4) and reasons which explained the principles, such as:

'move odd-numbered disc in the clockwise direction'
'move even-numbered discs in the counterclockwise direction'

In light of our present analysis, we would expect the poor solvers not only to produce

fewer explanations (i.e., less articulation), but also to produce explanations that are not

necessarily Justifications (as those In Type 1). We would expect good solvers to produce

both more explanations and also to produce explanations which basically state subgoals,

(as those In Type 2). which Induce a goal from a sequence of actions (as those in Type 3),

and which relate actions to principles (as those in Type 4). Unfortunately, Gagne and

Smith did not break their students down Into good and poor solvers. In other words, we

do not think that articulating an explanation per se is the critical factor (as suggested by

Gagne and Smith); rather, what the students articulated Is the most important factor.

Why do self-explanations help understanding and problem solving? To put it in

another way, what is learned from self-explanations? We have several tentative

conjectures, which may not be mutually exclusive. One interpretation Is that self-

explanations consist of the creation of Inference rules that are Instantlations of the

principles and definitions Introduced in the text. These Inference rules are specific to the

example presented. (They may be generalized later during episodes of learning from

problem solving.) For example, we can collapse related explanations Into Inference rules.

They are related usually if they refer to the same conditions. For example, the last 5
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explanations shown In Fig. 5 (III - VII), can be converted to three Inference rules (shown

In Fig. 7).

Rule 1: IF there is a body, and It has weight

THEN the weight will act as a force.

Rule 2: IF there are forces upholding a body

THEN they are resistant to the body's weight and

they are equal to he orce of weight.

Rule 3: IF (there Is the force of the weight of the body

and there are resistance forces...)

THEN they will all equal out.

Figure 7: Coding of lines 6-13 of Figure 5 into three Inference rules.

These Inference rules may be taken as instantlations of the definition of a force (Rule 1),

application of Newton's Third Law (Rule 2), and Instantlation of Newton's Second Law

(Rule 3). In fact, Larkin and Simon (1987) found It necessary to model problem solving

by the use of similar kinds of Inference rules. The present study provides evidence to

support such a claim. In fact, our data further support Larkin and Simon's (1987)

conjecture that 'students may well be unable to solve problems In part because they

learn principles, and do not translate them Into Inference rules' (p. 75). As roted earlier,

we found no differences in the abilities of the Good and Poor students to write down the

declarative definitions and principles introduced In the text part of the chapter.

However, unless students translate the declarative knowledge Into specific procedural



50

inference rules, they cannot use them to solve problems.

Another Interpretation of self-explanations, based on the analyses of the

explanations which related to Newton's Laws, is the idea that students, while reading the

text, have only encoded a subset of the components of the Laws. That is, some features

of the Laws are not noticed as Important, until one sees that they are emphasized In the

example. Through self-explanations, the students are relating these new components of

the Laws to components they already know.

A third way to look at the role of self-explanations is to say that the declarative

Laws have been encoded entirely, but that some components are more accessible than

others, and thus more easily articulated explicitly (as In the case of answering

Declarative questions about them). On the other hand, self-explanations during studying

examples may make other latent or implicit components more accessible. Our data

cannot discriminate between the states of knowledge in which this information was

available but inaccessible versus not available at all.

Another possible mechanism underlying self-explanations may be that self-

explanations produce a qualitative constraint network which represents knowledge of the

solution steps. For instance, a system of trigonometry constraints could link together a

general equation, such as F + F = 0, the diagram of forces, and a specific equation,ax bx
0 0

-F acos 3 0 - F bcos4 5  = 0. When a similar problem Is encountered, say one with

different angles, qualitative propagation through the constraint network can yield a plan

for the quantitative solution. More Importantly, the constraints can propagate

Information in both forwards and backwards directions, so that the above constraint
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system could be used to generate a plan for solving for one angle given the values of the

other angle and the net force. Such qualitative constraint networks may be the kind of

inference structure generated by self-explanations, at least Initially (VanLehn, personal

communication).

Finally, models do exist In the Al literature which can generalize from a single

training example (Lewis, 1986; Mitchell, Keller & Kedar-Cabelil, 1986). Such

generalizations are acquired by constructing a proof (explanation) of how an example is

an instance of the concept which It exemplifies, then, within the formal theory of the

task domain, the explanation is generalized to cover a larger class of examples. Our data,

at a gross level, provide empirical evidence to suggest that such explanation-based

learning may Indeed be the way students generalize from single examples. However, we

need a more detailed look at these models to see the extent to which they can

accommodate our data. In Lewis' (1986) model (EXPL), the system basically contains a

set of heuristics for detecting the relation between the action taken and the outcome of

an action. For example, In learning text editing, suppose a student is observing a

demonstration of the following action and its outcome: the screen draws a box around

an object, and shortly after, the object in the box disappears. An IDENTITY heuristic

will be able to conjecture that the relation between the action of drawing a box around

an object causes the object to disappear. Thus, the function of explanations is to apply

these heuristics to come up with a hypothesis of the relation between the action and the

outcome. Notice that these heuristics are domain-independent. In our data,

understanding an action and Its outcome requires conjecturing not only a relation

between the action and its outcome, but also to explain how that action-outcome pair is

an Instantiation of a principle which Is part of the domain theory. Thus, the greatest

L.
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difference between what our students can do and what EXPL can do is that EXPL

cannot capture the role of the domain knowledge. In fact, the to-be-learned domain

(text-editing) Is very syntactic In nature, and does not require domain knowledge in

order to understand the example actions.

In Mitchell et al.'s (1986) system (E3S), however, domain knowledge is provided.

The contrast between Mitchell's theory and our data is that Mitchell's system has 'too

muchu domain knowledge Yil tOo following sense: when an example has to be proved to

be an instance of a goal concept, the system already has a clear and a complete

definition of this goal concept. Thus, the function of explanation Is to produce a proof

that the example is an Instance of the goal concept. This may require that some features

of the example be inferred so that the features of the example will match those defined

in the goal concept. If we assume that the knowledge that permits these inferences.to be

made on the example concept is analogous to the domain knowledge of physics, then this

particular aspect of the model does seem to simulate parts of our students' behavior.

However, the key difference between the knowledge possessed by the EBS system and

our students is that EBS has all the knowledge of the goal concept, whereas our students

do not. For example, our students do not have a complete understanding of Newton's

Laws. Furthermore, the function of students' explanations seems to be both the

enhancement of their Initial understanding and generation of new understanding.

In sum, while our data does seem to support these two Al models in a general way,

detailed analyses point out that these models are Incomplete In describing actual

learning, mainly because students' Initial learning from text Is more limited than the

EIBS model, for example, and yet their subsequent learning from the examples Is more



53

sophisticated.

We conclude by once again quoting Simon (1979), with regard to- the

characteristics of the learner:

It is left largely to the student (by examining worked-out examples, by working

problems, or in some other way) to generate the productions, the condition-

action pairs, that are required to solve problems (p. 92, emphasis added).

We believe that the 'some other way" that students learn is via generating and

completing explanations. Hence, we have provided evidence for Simons Insight that

*students learn both by being taught and by self-instructionO (p. 87), whereby self-

instruction is mediated by self-explanations.
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Notes
1Newton's First Law states that *Every body persists In Its state of rest or of

uniform motion In a straight line unless it s compelled to change that state by forces

Impressed on it.
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